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E
projhDG[t],1j

dq1 dp1 1 ? ? ? 1 E
projhDG[t],Nj

dqN dpN 5 const, (3a)
A numerical method for the time evolution of systems described

by Liouville-type equations is derived. The algorithm uses a lattice E
DG[t]

dq1 ? ? ? dqN dp1 ? ? ? dpN 5 const. (3b)of numerical markers, which follow exactly Hamiltonian trajectories,
to represent the operator d/dt in moving (i.e., Lagrangian) coordi-
nates. However, nonconservative effects such as particle drag, cre-

In the above, DG [t] refers to any connected, moving collec-ation, and annihilation are allowed in the evolution of the physical
tion of phase points. The N 2 2 intermediate integrals—distribution function, which is itself represented according to a df

decomposition. Further, the method is suited to the study of a gen- which we have not included—are written more naturally
eral class of systems involving the resonant interaction of energetic using differential forms, and we refer the reader to the
particles with plasma waves. Detailed results are presented for both text by Arnold [1] for a general discussion. These quantities
the classic bump-on-tail problem and the beam-driven TAE instabil-

are time (and canonical transformation) invariant.ity. In both cases, the algorithm yields exceptionally smooth, low-
However, if one wants to model the motion of particlesnoise evolution of wave energy, especially in the linear regime.

Phenomena associated with the nonlinear regime are also which can be effectively created or destroyed, then the
described. Q 1996 Academic Press, Inc. Liouville equation, Eq. (2), is not an appropriate descrip-

tion—even in the case where the particles themselves still
follow Hamiltonian trajectories.

1. INTRODUCTION AND BACKGROUND
1.2. The Generalized Liouville Equation

1.1. The Liouville Equation
As a simple example, consider the description of a one-

Consider a distribution function f which describes an dimensional plasma moving in an electrostatic potential
ensemble of particles (or more generally, an ensemble of field w(x, t). Further, assume that particles are injected
system points) following a Hamiltonian flow in the phase into the system at a rate S(v) and effectively removed by
space G: charge exchange with background neutrals at a rate

1/tcx(v). Then, the relevant kinetic equation can be written

f 5 f(G, t) with G ; (q1 , ..., qN; p1 , ..., pN). (1)
­f
­t

1 v
­f
­x

2
­w

­x
­f
­v

5 S(v) 2
f

tcx(v)
. (4)

The number of system points in the phase volume element
dG at time t is f(G, t) dG. If these points are neither created

Here, we emphasize that even though the trajectories (ornor destroyed, the distribution function f must satisfy the
characteristics) in the phase space G 5 (x, v) are Hamilto-Liouville equation
nian, with

df
dt

5 0. (2) H(x, v, t) 5
v2

2
1 w(x, t), (5)

the overall motion of the phase fluid is not incompressible.Thus, the ‘‘fluid’’ of system points in this case moves incom-
pressibly. In fact, the motion is more than simply incom- Thus, Eq. (2) is not sufficient to describe the dynamics in

this case.pressible; because the phase space G is Hamiltonian, it will
always possess a hierarchy of N integral invariants, the first In the general case, one may allow for non-conservative

effects—that is, nonconservation along the Hamiltonianand Nth of which are
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flow Ġ—by considering f to satisfy a generalized Liou- nonlinear dynamics of the TAE. The challenge presented
a number a difficulties which were not properly resolvedville equation,
in the existing literature—such as the evaluation of mo-
ments of f 5 f0 1 df, as well as a rigorous description of

ḟ 5
­f
­t

1 Ġi
­f
­Gi

5 V( f, G, t), (6) transformations between loaded, canonical, and nonca-
nonical spaces. In what follows, a formulation is presented
which is very flexible and can be applied directly to eitherHere, the source function V denotes the rate of change of
the simple 1D bump-on-tail problem, or to the more com-f along an orbit. Of course, it is evident that one must
plicated TAE problem.provide a further moment equation for the evolution of w

(i.e., a Poisson-type equation). We will discuss this point
2.1. Derivationshortly. Nevertheless, the structure of Eq. (4) is indeed

that of the generalized Liouville equation, Eq. (6). For systems of interest in plasma simulation, it is often
In all but the simplest of systems, the specification of the case that f will differ only slightly from some known

equations to supplement the set ( ḟ, Ġ) will be required. analytic distribution f0—the difference arising through lo-
Specifically, the evolution of the Hamiltonian system may calized wave-particle interaction. In cases where f is only
depend on any number of ‘‘external’’ quantities, such as weakly distorted, it can be shown [5] that the df separation
plasma waves, whose evolution is determined self-consis- results in a reduction of order udf/f u2 in numerical ‘‘noise
tently by the form of the distribution function f (through intensity.’’ This factor was originally postulated by
moment equations, or otherwise). For example, we could Kotschenreuther [6] some years ago.
close the one-dimensional system described above by spec- We will begin by formulating the algorithm for systems
ifying an independent differential equation for the evolu- where the position and velocity-space coordinates are ex-
tion of w(x, t). Whatever the procedure, the motion in the actly canonical—for example, the (x, v) space of Eq. (5).
(x, v)-plane remains that of an explicitly time dependent Systems for which the configuration/velocity space vari-
Hamiltonian system. ables are not canonical do arise and require additional

In Section 2, we describe a general method to solve Eq. generalization. We will discuss this point with reference
(6) by following an ensemble of Hamiltonian trajectories to the TAE problem in Section 4.
numerically. This method decomposes the distribution f Begin by decomposing f(G, t),
into continuous and discrete parts according to a low-noise
df scheme [2–6]. In Section 3, the method is applied to the

f(G, t) 5 f0(G, t) 1 df(G, t), (7)
classic bump-on-tail problem, and in Section 4, a simulation      

analytic markersof the toroidicity-induced Alfvén eigenmode (TAE) is de-
scribed. We include a brief discussion of considerations

where f0 is a chosen analytic function, and df will be repre-related to the time integration scheme in Section 5. A
sented by a discrete lattice of markers. The evolution ofsummary is given in Section 6.
df, when viewed as a functional df [G(t), t] on the infinite-
dimensional ‘‘fluid’’ phase-space G, can then be approxi-2. THE HAMILTONIAN TRAJECTORY METHOD
mated by the evolution of a finite-dimensional (np) set
of markers:The present algorithm was inspired by the work of Par-

ker and Lee [2], who outlined a related scheme for the
gyrokinetic simulation of drift-waves. This technique falls

dḟj(t) 5 Vj 2
­f0j

­t
2 O2N

i51
Ġ i

j(t) F­f0

­G iG
Gi5Gi

j

, j 5 1, ..., np . (8)into the same general class as any of the so-called df algo-
rithms [3], which have found considerable success in the
form of low-noise particle codes for the solution of the

The separation into analytic ( f0) and numerical (df ) com-gyrokinetic equation and for the study of the linear and
ponents in no way presumes that the latter must be muchnonlinear evolution of TAE modes [4]. Indeed, it is now
‘‘smaller’’ than the former. In fact, the separation is for-well-recognized that df-methods offer a substantial im-
mally valid in all cases. However, when the conditionprovement in accuracy over traditional simulations in cases
df ! f0 is satisfied, the simulation noise is expected towhere the particle distribution is only weakly modified
be substantially less than if the entire distribution werefrom a ‘‘background’’ which is specified analytically. A
represented numerically.systematic kinetic theory to quantify the noise intensity

The np equations above are supplemented by 2N 3 npreduction in df simulations has also been recently devel-
Hamiltonian marker equationsoped by Hu and Krommes [5].

The formulation presented in this paper arose through
Ġ i

j 5 F i
j(G, Z(t)), (9)attempts to devise a particle simulation code to study the
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where the vector Z(t) is any time-dependent function which Since the nonlinearity of the bulk plasma is largely irrele-
vant for the growth and saturation of the unstable part ofappears in the Hamiltonian, but whose evolution is not

governed by canonical equations. Z may be a simple ana- the spectrum, it is sufficient to consider the interaction of
particles with ‘‘fixed’’ electrostatic modes. In doing so,lytic function, or conversely, a complicated function of time

which must be calculated by numerical means. Moreover, the need to solve the Poisson equation is eliminated and
replaced by evolution equations for only the amplitudethe dimension of Z is in no way connected with the number

of markers, and in Section 3 we will show how this function and phase of each discrete mode. Analytic features of this
model have also been calculated [8]. In the study of wave–may be used to represent a spectrum of wave amplitudes

and phases hA, aj in both the bump-on-tail and TAE particle interaction, the bump-on-tail problem emerges as
an important paradigm, with many features in commonproblems.

Now, consider an arbitrary space U , with Dim(U ) 5 with more complicated stability problems, such as that
posed by fast-particle-driven modes in tokamaks (i.e. fish-2N, which is filled with lattice points in an asymptotically

uniform way. Such a uniform space is related to the original bones or TAE modes).
phase space through

3.1. Formulation in Terms of the Characteristic Method
dG 5 M (U ) dU, (10) Throughout this example, we will restrict our discussion

to the case of one wave. We will use the wave variables
where M is the determinant of the Jacobian matrix. With (P, Q) (which correspond formally to Z of Eq. (9)) such
these definitions, it follows that integral operators trans- that the amplitude A and phase a are given by P 5 A cos
form as a and Q 5 A sin a. The wave–particle interaction equa-

tions (not yet in df form), including a background wave
damping rate, cd, are [7]E f(G, t)g(G, t) dG p E f0(G, t)g(G, t) dG

(11)
ẋj 5 vj , (14a)

1 Onp

j51
dfj(t)g(Gj(t), t) DGi ,

v̇j 5 Q cos(xj 2 t) 2 P sin(xj 2 t), (14b)

where we have defined the equivalent (time-independent) Q̇ 5 2cdQ 2
1
ni
Onp

j51
qj cos(xj 2 t), (15a)

phase space marker volume

Ṗ 5 2cdP 1
1
ni
Onp

j51
qj sin(xj 2 t), (15b)DGj ; V(U )

np
M j with V(U ) 5 E dU . (12)

where ni is the number of plasma ions and oj qj 5 nb isNote that in a conventional particle simulation, one
the number of beam ions, with each qj the ‘‘macroparticlewould represent the entire distribution f as a sum over
weight.’’ Clearly, the space G 5 (x, v) is canonical. We caneither point, or shaped, particles. In the present notation,
now construct the df system, with a source and sink: giventhis would imply f0 5 0, and consequently, that ḋf 5 0.
an initial distribution f0(v) annihilation rate n and sourceEach dfj would then be constant along the phase flow, with
S(v) 5 nf0(v), we replace Eqs. (15a), (15b) bymoments of f determined through the more familiar associ-

ation

Q̇ 5 2cdQ 2
1
ni
Onp

j51
dnj cos(xj 2 t), (16a)E f(G, t)g(G, t) dG p Onp

j51
dfj(0)g(Gj(t), t) DGj , (13)

Ṗ 5 2cdP 1
1
ni
Onp

j51
dnj sin(xj 2 t), (16b)

which is just a sum over weighted particles.

dṅj 5 2v̇j f 90(vj) DGj 2 n dnj , (17)
3. THE BUMP-ON-TAIL INSTABILITY

As a simple example, we apply the Hamiltonian trajec- The df-system is represented collectively by Eqs. (14)
(marker equations of motion), Eqs. (16) (wave evolutiontory algorithm to the bump-on-tail problem, using the

Lagrangian formulation developed by Berk, Breizman, and equations), and Eq. (17). In the above, we have introduced
the functions dnj ; dfj DGj, with DGj 5 M j/np (below, V(U )Pekker [7]. This model describes the nonlinear interaction

of energetic electrons with a spectrum of plasma modes. is taken to be unity). Each dnj is analogous to an effective
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M 5 4 f
1 1 3c(1 2 2z)2

1 1 c
. (21)

3.2. Linear Growth Rate and Saturation

For the time integration of Eqs. (14), (16), and (17), we
use a fourth-order Adams predictor [9]. Since the df form
of the equations is not Hamiltonian, special symplectic
integration methods [10–11] are not applicable, although
it is conceivable that hybrid or other specialized methods
may, in the future, be developed. We will discuss this point
further in Section 5.

The first test for the efficiency and accuracy of the algo-
FIG. 1. Marker distributions generated using the sequence defined rithm is to reproduce known values for the linear growth

by Eq. (A1): (a) Uniform distribution on the unit square; (b) resonance- rate cL and the mode saturation ratio cL 5 gt/cL (with
loaded distribution, Eqs. (23) and (24), for c 5 2; and (c) for c 5 4. gt 5 ÏA, and cL p 3.3). Figure 2 shows the results of a

5000-particle simulation, where the numerical growth rate
and saturation amplitude agree precisely with theory. The

‘‘particle fluctuation,’’ with the total number of beam parti- number of particles used is very small by comparison with
cles nb 5 e f0 dG p oj f0 j DGj. Frequency and wavelength non-df methods. The latter, it should be emphasized, re-
have been normalized so that the resonant velocity is v 5 1. quire an increasing number of particles to overcome noise

For the simulation, we will use a smooth initial distribu- from the numerical representation of f0 as cL is decreased
tion defined over the interval 0 # v # 2. This avoids any (compare with the 512,000-particle simulation of Cary and
difficulty with reactive contributions coming from a distri- Doxas [10]). Due to the intrinsic scaling of the RHS of
bution which goes discontinuously to zero at the end- Eq. (14b) and thus Eq. (17) with the wave amplitude,
points. Choosing we can choose b as small as we like (obvious numerical

requirements, such as uȦ/Au . 10215, notwithstanding) and
f0(v) 5 Cv4(2 2 v)2, (18) the model equations will capture precisely the linear dy-

namics. For example, it is possible to accurately track the
with C a normalization constant, yields an unstable mode linear evolution of a mode which carries less energy than
with linear growth rate a single resonant particle.

Once the wave has saturated, many more markers are

cL 5 f 2 f 90(1)
ni

; f 2b. (19)

It is easy to verify that b 5 (105/128f)(nb/ni). Equation
(19) is valid for cL much smaller than the characteristic
width of f 9(v) (that is, cL ! u f 9/ f 0u). Otherwise, resonant
particles away from v 5 1 contribute to the growth rate,
and a more complicated integral over f 9 is required.

Now, fill the unit square (y, z) with points using the
method of Appendix A, as illustrated in Fig. 1a; then map
these points to the (x, v) space (0 # x # 2f and 0 #
v # 2) according to

x 5 2fy, (20a)

v 5
2z(1 1 c(3 2 6z 1 4z2))

1 1 c
. (20b)

This gives a loading preferentially weighted along v 5 1,
in proportion to the value of c (with c 5 0 uniform, and

FIG. 2. Linear evolution and subsequent nonlinear saturation of a
increasing values more concentrated along v 5 1). Exam- single mode, determined by solving Eqs. (20) for b 5 5 3 1024 and
ples for c 5 2, 4 are shown in Figs. 1b and 1c. The Jacobian cd 5 n 5 0 with np 5 5000 markers. Dashed curves show analytic predic-

tions for linear evolution and saturated amplitude.in this case is simply
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FIG. 4. Comparison of equilibrium and saturated distributions forFIG. 3. Comparison of nonlinear oscillations of the saturated wave
the simulation of Fig. 3 (np 5 30000). Flattening at the resonant velocityfor np 5 20000 and 30000 and b 5 2 3 1023. A small phase shift occurs
v 5 1 is clearly evident.due to finite marker number.

with the total number n(t) 5 nb 1 dn(t). In the limit
required, in general, to resolve the small-amplitude nonlin- np R y, we expect dn 5 0 to obtain, thus satisfying the
ear oscillations. We have observed that after the wave requirement of particle conservation. In general, these con-
saturates and begins executing quasi-periodic nonlinear clusions indicate that one should consider the size of the
oscillations, a slow phase decorrelation becomes evident relative fluctuation dn/nb as a simple and useful measure
in simulations with differing marker numbers. Because the of code accuracy and convergence—as well as a means
simulations are converged with respect to integrator time of detection of coding error. Indeed, Parker and Lee [2]
step, the difference is due solely to the nondense marker encountered poor convergence of the RMS fluctuation of
covering of phase space. Consequently, as the number of dn with increasing particle number. This was the result of
markers is further increased, convergence can be expected a very subtle error in the formulation of their nonlinear
for a finite time only, as infinitesimally nearby markers in weighting scheme, as pointed out by Krommes and Hu [5].
the vicinity of a separatrix will diverge exponentially due Figure 5 shows a plot which illustrates the convergence of
to turbulent mixing of phase volume. This phenomenon is
illustrated in Fig. 3, for b 5 2 3 1023, where simulations
with 20000 and 30000 markers are compared. Visual differ-
ences, as we have indicated, are not affected by a decrease
in time step. As the wave saturates, the particle distribution
is flattened in the vicinity of the resonant velocity v 5 1,
as illustrated in Fig. 4.

3.3. Particle and Energy Conservation

Consider first the special case cd 5 n 5 0. Here, we
expect the total particle number in the corresponding phys-
ical system to be time invariant (since n 5 0). However,
this invariance is not exactly realized in the numerical
method for a finite number, np, of markers due to discreti-
zation error. If we begin with df 5 0 (i.e., all
dnj(0) 5 0), then

nb 5 E f0(v) dx dv (initial number), (22a)
FIG. 5. Relative fluctuation in particle number for a series of runs

with np 5 1000, 2000, and 4000 for b 5 5 3 1024. In this case, we expect
dn R 0 as np R y to reflect particle conservation in the continuousdn(t) 5 Onp

j51
dnj(t) (fluctuation), (22b)

Liouville system.
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clude that an extra degree of ‘‘smoothing’’ is obtained from
a differential update.

3.4. Source, Sink, and Wave Damping

The addition of a particle source, S, relaxation rate, n,
and background damping rate cd to the model represents
a nonconservative generalization to the overall dynamics.
When these parameters are finite, two possible wave evolu-
tion scenarios are possible. The first is steady-state satura-
tion and occurs roughly when the relaxation rate exceeds
the background damping rate. However, in the opposite
limit of strong background damping, ‘‘bursting’’ of the
wave amplitude may result. Both these phenomena occur
on time scales much longer than the linear growth phase
and are relatively difficult to resolve numerically. We con-
centrate on the steady-state regime, for which Berk and

FIG. 6. Evaluation of A(t) using the energy integral, Eq. (24) (solid Breizman [8] have calculated the following estimate of the
curve) compared with differential update, Eqs. (16a), (16b) (dotted ratio of trapping frequency to linear growth rate:
curve). Parameters are the same as in Fig. 1.

gt

cL
5 1.9

n
cd

. (25)

dn/nb as np is increased. Generally, the amplitude of the
fluctuation increases in rough proportion to the wave am- Comparison of the numerical model with this estimate is
plitude. illustrated in Fig. 7, where a slow approach to the steady-

A relatively important feature of the algorithm is the state value is in fact observed.
differential form of the amplitude update given by Eqs.
(16a), (16b). To see this, consider the case of a single 4. THE TAE
mode in the non-df formalism. One can form the following
identity directly from Eqs. (15) (with cd 5 0): The toroidicity-induced Alfvén eigenmode (TAE) is a

global, weakly damped magnetohydrodynamic mode
which exists only in toroidal plasmas. Experimental obser-SP2

2
1

Q2

2 D1 b Onp

j51
qjvj 5 const. (23) vations have shown that MeV-fast ions—produced by ion-

This quantity represents the exact conservation of momen-
tum. In fact, this equation also reflects conservation of
system energy, to the extent that d(v2/2)/dt 5 vv̇ p v̇ for
resonant particles. The identity, Eq. (23), evidently repre-
sents an algebraic method for the update of the wave ampli-
tude according to

A(t)2 p A(0)2 2 2b Onp

j51
dnjvj . (24)

However, plotting the right-hand side of Eq. (24) in Fig.
6, we obtain a very surprising result. For a moderate num-
ber of markers, the above-weighted sum over marker mo-
menta is a rapidly oscillating function of time—much nois-
ier than the amplitude as determined from the differential
equations, Eqs. (16a), (16b). The oscillations present in
the solid curve of Fig. 6 indicate a high level of statistical FIG. 7. Slow relaxation to steady-state wave amplitude in the pres-
noise. Although the agreement improves as required when ence of finite dissipation (cd 5 n 5 0.001) for b 5 0.004. Dashed horizontal

line shows the analytic estimate, Eq. (25), for the steady-state value.np increases (or, notably, as cL increases), one must con-
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cyclotron resonance heating and neutral beam heating Pw 5 r 2 c

Pu 5 Ir 1 ct
J with rB 5 vi 1

kim

g
F, (29)[12]—can destabilize the TAE. As a result, there is concern

that it will be similarly unstable to the alpha particle popu-
lations present in a burning plasma [12]. Possible conse-

such that kim 5 n 2 m/q is the parallel wavenumber. Thequences are prompt alpha loss from the plasma into the first
guiding center equations are obtained from the Hamilto-wall (with consequent wall damage), as well as collective
nian, Eq. (27), in the usual way. In particular, it is importantinstabilities causing alpha profile redistribution and
to note that r 5 r(Pw, Pu) and c 5 c(Pw, Pu). The invariantpoorer-than-expected alpha heating. Resolution of these
volume element connected with this flow istransport and confinement issues hinges upon fast, accurate

calculation of the both the growth rate and saturated ampli-
dG 5 (2fe) dPw dw dPu du. (30)tude of these modes.

For simplicity, we consider only the gyro-averaged mo-
4.2. Algorithm for Numerical Simulationtion of fast particles. There are four non-trivial dynamical

variables in this motion: the velocity component along the In toroidal geometry, the element of volume is usually
magnetic field, vi, as well as three spatial coordinates, (w, obtained by forming a simple product of velocity and real-
u, c)—the toroidal angle, poloidal angle, and poloidal space elements,
flux—which are determined by the equilibrium magnetic
field structure. While tokamak equilibria must in general dG (p) ; d3r d3v 5 2fv2 dv dl J dc dw du, (31)
be calculated numerically, we will adopt an analytic equi-
librium which is appropriate for circular cross section and where J is the Jacobian connecting real-space coordinates
large-aspect-ratio [13]: to the straight-line (generally nonorthogonal) coordinates

(w, u, c):

B 5 =w 1 I=u with B 5
(1 1 (r/q)2)1/2

1 1 r cos u
. (26)

J 5
1

u=c ? (=u 3 =w)u
5

I 1 q
B2 , (32)

Here, I ; r2/q and dct 5 r dr 5 q dc, with c the poloidal
and l ; vi/v is the cosine of the pitch angle. A factor of

flux, ct the toroidal flux, and q(c) the safety factor. The
2f arises in dG (p) from an integration over gyrophase. The

last quantity is arbitrary within the context of the present
volume element dG (p) is not canonical and as a conse-

discussion. Also, here and in subsequent formulae, B is
quence, the distribution f (p) of phase points on this element

normalized to its value at c 5 0.
does not satisfy the Liouville equation. However, it can be
seen that

4.1. Guiding Centre Hamiltonian

f (p) dG (p) 5 f (p) N dG, (33)We choose dimensions such that the fast particle mass,

  m, the major radius, R0, and the cyclotron frequency, gc, f

are unity. Then, the guiding center Hamiltonian takes the
form [13] such that f does satisfy the Liouville equation. Here, N (t)

is the determinant of the Jacobian matrix

Hgc(Pw , Pu , w, u, e, t) 5
v2

i

2
1 eB 1 F, (27)

N (t) ; U­G (p)

­G
U5

J B2

D
, (34)

with the magnetic moment, e 5 v2
'/2B, an exact invariant

with D ; r dI/dc 1 I 1 q. Thus, in general, the kineticfor a given particle. Considering only a single (m, n)-helical
equation for f (p) will contain an additional term due tocomponent of a TAE perturbation, we can write
N
.

. For fast ions in a tokamak, however, the Jacobian N

is very close to unity. In this case, we can sidestep the
F 5 [ X (t) cos (Q) 1 Y (t) sin(Q)]f(c), (28) present difficulty by simply specifying f, rather than f (p).

In doing so, the evolution of N remains implicit. Normal-
ization constants (such as the total number and pressurewhere Q ; nw 2 mu 2 gt is the phase angle of the wave,

f(c) is the radial mode envelope, and the pair ( X , Y ) of fast-particles, nf and bf) can still be computed using f (p)

in the usual way with negligible error.are slowly varying amplitudes. In the limit of zero plasma
pressure, the canonical toroidal and poloidal angular mo- In the absence of a plasma wave (F 5 0), the fast particle

motion will conserve both energy, Hgc, and toroidal mo-menta become
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mentum, Pw . The unperturbed distribution of fast particles of the mode. Another subtle but important point is the
absence of f0 in the wave equations, Eqs. (40). Because f0is accordingly restricted to be a function of these motion

invariants. To calculate the evolution of the fast particle is axisymmetric (no w-dependence), the first integral on
the RHS of Eq. (11) vanishes. In other words, for any g(Pw,distribution in the presence of a perturbation, we decom-

pose the exact distribution f as Pu, u, e, t), we have

f 5 f0(E , Pw; e) 1 df(G, t), (35) E2f

0
g(Pw , Pu , u, e, t) sin(nw 2 mu 2 gt) dw 5 0. (41)     

analytic markers

This completes the description of the TAE model. Thewhere E 5 E(Pw, Pu, u) is defined as E ; r2B2/2 1 eB.
result is a (5 np 1 2)D system of ordinary differentialThis definition ensures that the initial number of particles,
equations: hṖwj , ċj , ẇj , u̇j , df

.
jj, for j 5 1, ..., np, along withn0, is time-invariant:

hẊ Ẏ j. Note that we have chosen to integrate c forward
in time instead of Pu. This is the preferred coordinate for

n0 ; E f0(E , Pw; e) dG 5 const, (36) guiding center simulations since Pu 5 Pu(c). Otherwise, an
implicit equation must be inverted to determine c.

with the deviation evolving according to
4.2. Simulation Results

We first consider the linear growth phase of a wave usingḋf 5 2Ṗw

­f0

­Pw

2 E
. ­f0

­E
. (37)

the beam distribution

This equation has the desired property that the evolution
of df is driven only by the wave perturbation, such that f0 5 C exp S2a

kcl
c(a)D exp S2

E

TD d Se
E
D, (42)

the average of the RHS is nearly zero for all but a small
fraction of resonant particles. Note that if one were to

with kcl ; E 1/2 2 P an ‘‘orbit-averaged’’ measure of thespecify f (p), rather than f, as we have indicated, the pres-
poloidal flux valid for passing particles, and c(a) the fluxence of an N

.
term would spoil this desireable property.

at the plasma edge, r 5 a. A single (n, m) 5 (5, 7) helicalIn order to represent df numerically, we begin by filling
perturbation in a high-field, large-aspect-ratio (a 5 80 cm,an arbitrary space U with a four-dimensional point set and
R0 5 800 cm) equilibrium was considered. The extremethen relating this set to the corresponding element in G as
parameter values were chosen so that results would lie wellper Eq. (10). It should be clear that the choice of U is not
within the small-orbit-width, large-aspect-ratio regime, andunique and may be altered to suit a particular simulation.
thus be amenable to comparison with analytic formulae.A simple choice is
The time integration was performed using a fourth-order
Adams predictor method, although the more general ver-

dU 5 dc dv dl dw du so that M 5
2fv2D

B2 . (38) sion of the nonlinear code—which must cope with trapped
particles and marker losses—uses a fourth-order Runge–
Kutta (RK) method.Equation (12) can once again be used with

We set a 5 2.5 and T 5 1.76 MeV and made a scan of
growth rate versus magnetic field strength. Figure 8 showsV(U ) 5 (2f)2(lmax 2 lmin)(cmax 2 cmin)(vmax 2 vmin).
the results, for both ‘‘unlocked’’ and ‘‘locked’’ wave fre-(39)
quency. The frequency-locked evolution is obtained opera-
tionally by fixing Y ; 0—a standard approximation of

Defining dnj as in Eq. (17), the wave equations are
linear theory. In reality, as the drive increases, a frequency
shift is induced which (in the unlocked-frequency case)
modifies the resonance condition and consequently theX

.
5 2

1
2E Onp

j51
dnj(g 2 kimrjBj) sin(Q)f(c), (40a)

growth rate. Figure 8 shows that the frequency shift in this
case leads to a decrease in the growth rate. We emphasize
that these results were computed with the wave amplitudeY

.
5

1
2E Onp

j51
dnj(g 2 kimrjBj) cos(Q)f(c). (40b)

many orders of magnitude smaller than the saturated
state—so that wave-particle nonlinearity is negligible.

In Fig. 8 the df results, each computed using 60000 mark-The non-df forms, from which these were obtained, can
be derived by following the presentation in [14]. Above, ers, are compared with both an analytic approximation

(which treats finite-orbit-width effects perturbatively), asE is a normalization constant related to the inertial energy



168 J. CANDY

ITER-like plasma. This should be compared with Fig. 9
of [4], which shows a 100000 marker df simulation of the
same system for a simpler n 5 3 perturbation.

5. CHOICE OF INTEGRATION METHOD

The choice of time integration method is clearly an im-
portant concern for the development of a fast simulation
code. Substantial improvements in performance and accu-
racy over typical adaptive Runge–Kutta (RK) or pre-
dictor–corrector (PC) methods are achievable in tradi-
tional (non-df ) particle codes [10] through the use of
symplectic integration algorithms (SIA) [11]. Unfortu-
nately, these algorithms are not applicable to the df systems
of this paper, since the system of ordinary differential equa-

FIG. 8. Comparison of linear growth rates for a beam-driven TAE. tions is not Hamiltonian.
The dots are df simulation results (with solid dots for locked phase and With regard to the simulation of toroidal plasmas, thereopen circles for unlocked phase). The solid curve is the numerical result

is no known factorization of the guiding center Hamilto-from an independent dW code, and the dashed line was calculated using
nian into a product of integrable Lie maps, so that ana zero-orbit-width analytic formula.
explicit SIA of second or higher order does not exist. Fur-
thermore, restrictions on the integrator are imposed by
particle losses and origin crossings (the latter situationwell as with the growth rate calculated by an independent
requiring a change of coordinate system). These considera-numerical linear dW code. Such cross-code compari-
tions led to the choice of an RK method for the generalsons are of inestimable value for error-detection. The
TAE integrator, although integration of simple passingagreement between codes indicated in Fig. 8 is exceptional.
orbits indicated that the more cumbersome Adams pre-Moreover, in terms of execution time, the fully nonlinear
dictor step was slightly faster for a given accuracy.initial-value df code is suprisingly competitive with the

linear dW code for calculation of cL/g.
6. SUMMARY AND CONCLUSIONSAs a final illustration of the application of the df method,

Fig. 9 shows a 60000 marker simulation of the growth and
In this paper we have developed a systematic numericalsaturation of an m 5 (8, 9), n 5 10 TAE mode driven by

approach to solve the generalized Liouville equation,an isotropic distribution of alpha particles in a realistic,
which makes use of a numerical grid defined by the Hamil-
tonian trajectories of the associated conservative system,
along with a df decomposition of the distribution function.
The applicability of the method to systems which may have
nonconservative degrees of freedom (i.e., waves subject
to background dissipation), as well as to systems whose
position and velocity coordinates are not exactly canonical,
has also been demonstrated. Various numerical tests have
been performed using discrete particle models of the
bump-on-tail and TAE instabilities. These show excellent
agreement with independent calculations of the growth
rate and (for the bump-on-tail problem) saturation am-
plitude.

APPENDIX A: NONRANDOM MARKER LOADING

A simple procedure exists for filling the space U with
low-noise point sets. This method and the associated prob-

FIG. 9. Growth and saturation of an n 5 10, m 5 (8, 9) TAE mode lem of particle loading are described in detail by Denavit
in an ITER-like plasma, calculated using np 5 60000. The fast particle

and Walsh [15]. The utility of this method stems fromdistribution is isotropic and slowing-down in velocity, with a realistic
the avoidance of ‘‘beaming’’-type instabilities which occurspread around the alpha birth energy. The alpha pressure gradient is

peaked around r/a p 0.5. when loading on a regular lattice, while still maintaining



GENERALIZED LIOUVILLE EQUATION 169

Thanks also to H. L. Berk and B. N. Breizman for providing the botha higher degree of uniformity than a random population.
the motivation and the actual formalism to study the nonlinear problemsSuch a distribution enables a ‘‘quiet-start’’ to the simula-
discussed in this paper and to S. E. Sharapov and R. A. M. Van der

tion—something which is particularly useful for the calcu- Linden for reading an early version of the manuscript. Financial assistance
lation of linear growth rates and other early-time phe- from the Natural Sciences and Engineering Research Council of Canada
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Let U be the M-cube, and define
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